English | ÖÐÎÄ      
 Product Category
Optical Transceivers
400G QSFP-DD Modules
200G QSFP56 Modules
25G SFP28/QSFP28 Module
40G/56G QSFP+ Module
10G SFP+/XFP Module
150M~4.25G SFP Module
DACs / AOCs
800G OSFP/QSFP-DD DAC
400G QSFP-DD/QSFP112
200G QSFP56 DAC/AOC
25G SFP28 /100G QSFP28
40G QSFP+ DAC/AOC
10G SFP+ XFP DAC/AOC
Slim SAS Cables
6G/12G Mini SAS Cables
MPO/MTP Cable Accessories
Fiber Optic Cables
Passive FTTx Solution
Fiber Channel HBA
CWDM/DWDM/CCWDM
PLC Splitters
1000M/10G Media Converter
GEPON OLT/ONU Device
EOC Device
 
Technical Support
CWDM/DWDM SFP+/XFP+ SR,LR in WDM Systems(wiitek.com)
Editor: Tony Chen   Date: 3/16/2015

Wavelength-division multiplexing

In fiber-optic communications, wavelength-division multiplexing (WDM) is a technology which multiplexes multiple optical carrier signals on a single optical fiber by using different (colours) of laser light to carry different signals. This allows for a multiplication in capacity, in addition to enabling bidirectional communications over one strand of fiber. This is a form of frequency division multiplexing (FDM) but is commonly called wavelength division multiplexing.

The term wavelength-division multiplexing is commonly applied to an optical carrier (which is typically described by its wavelength), whereas frequency-division multiplexing typically applies to a radio carrier (which is more often described by frequency). However, since wavelength and frequency are inversely proportional, and since radio and light are both forms of electromagnetic radiation, the two terms are equivalent in this context.

WDM Systems

A WDM system uses a multiplexer at the transmitter to join the signals together, and a demultiplexer at the receiver to split them apart. With the right type of fiber it is possible to have a device that does both simultaneously, and can function as an optical add-drop multiplexer. The optical filtering devices used have traditionally been etalons, stable solid-state single-frequency Fabry-Perot interferometers in the form of thin-film-coated optical glass.

The concept was first published in 1970, and by 1978 WDM systems were being realized in the laboratory. The first WDM systems only combined two signals. Modern systems can handle up to 160 signals and can thus expand a basic 10 Gbit/s fiber system to a theoretical total capacity of over 1.6 Tbit/s over a single fiber pair.

WDM systems are popular with telecommunications companies because they allow them to expand the capacity of the network without laying more fiber. By using WDM and optical amplifiers, they can accommodate several generations of technology development in their optical infrastructure without having to overhaul the backbone network. Capacity of a given link can be expanded by simply upgrading the multiplexers and demultiplexers at each end.

This is often done by using optical-to-electrical-to-optical (O/E/O) translation at the very edge of the transport network, thus permitting interoperation with existing equipment with optical interfaces.

Most WDM systems operate on single mode fiber optical cables, which have a core diameter of 9 µm. Certain forms of WDM can also be used in multi-mode fiber cables (also known as premises cables) which have core diameters of 50 or 62.5 µm.

Early WDM systems were expensive and complicated to run. However, recent standardization and better understanding of the dynamics of WDM systems have made WDM less expensive to deploy.

Optical receivers, in contrast to laser sources, tend to be wideband devices. Therefore the demultiplexer must provide the wavelength selectivity of the receiver in the WDM system.

WDM systems are divided in different wavelength patterns: conventional or coarse and dense WDM.

  • Conventional WDM systems provide up to 16 channels in the 3rd transmission window (C-band, around 1550 nm) of silica fibers.
  • Dense WDM (DWDM) uses the same 3rd transmission window (C-band) but with denser channel spacing. Channel plans vary, but a typical system would use 40 channels at 100 GHz spacing or 80 channels with 50 GHz spacing. Some technologies are capable of 25 GHz spacing (sometimes called ultra dense WDM). New amplification options (Raman amplification) enable the extension of the usable wavelengths to the L-band, more or less doubling these numbers.
  • Coarse WDM (CWDM) in contrast to conventional WDM and DWDM uses increased channel spacing to allow less sophisticated and thus cheaper transceiver designs. To again provide 16 channels on a single fiber CWDM uses the entire frequency band between 2nd and 3rd transmission window (1310/1550 nm respectively) including both windows (minimum dispersion window and minimum attenuation window) but also the critical area where OH scattering may occur, recommending the use of OH-free silica fibers in case the wavelengths between 2nd and 3rd transmission window shall also be used. Avoiding this region, the channels 31, 49, 51, 53, 55, 57, 59, 61 remain and these are the most commonly used.
WDM, DWDM and CWDM are based on the same concept of using multiple wavelengths of light on a single fiber, but differ in the spacing of the wavelengths, number of channels, and the ability to amplify the multiplexed signals in the optical space. EDFA provide an efficient wideband amplification for the C-band, Raman amplification adds a mechanism for amplification in the L-band. For CWDM wideband optical amplification is not available, limiting the optical spans to several tens of kilometres.

Course WDM

Originally, the term "coarse wavelength division multiplexing" was fairly generic, and meant a number of different things. In general, these things shared the fact that the choice of channel spacings and frequency stability was such that erbium doped fiber amplifiers (EDFAs) could not be utilized. Prior to the relatively recent ITU standardization of the term, one common meaning for coarse WDM meant two (or possibly more) signals multiplexed onto a single fiber, where one signal was in the 1550 nm band, and the other in the 1310 nm band.

In 2002 the ITU standardized a channel spacing grid for use with CWDM (ITU-T G.694.2), using the wavelengths from 1270 nm through 1610 nm with a channel spacing of 20 nm. (G.694.2 was revised in 2003 to shift the actual channel centers by 1, so that strictly speaking the center wavelengths are 1271 to 1611 nm.[2]) Many CWDM wavelengths below 1470 nm are considered "unusable" on older G.652 specification fibers, due to the increased attenuation in the 1270-1470 nm bands. Newer fibers which conform to the G.652.C and G.652.D standards, such as Corning SMF-28e and Samsung Widepass nearly eliminate the "water peak" attenuation peak and allow for full operation of all 20 ITU CWDM channels in metropolitan networks. For more information on G.652.C and .D compliant fibers please see the links at the bottom of the article.

The Ethernet LX-4 10 Gbit/s physical layer standard is an example of a CWDM system in which four wavelengths near 1310 nm, each carrying a 3.125 gigabit-per-second (Gbit/s) data stream, are used to carry 10 Gbit/s of aggregate data.

The main characteristic of the recent ITU CWDM standard is that the signals are not spaced appropriately for amplification by EDFAs. This therefore limits the total CWDM optical span to somewhere near 60 km for a 2.5 Gbit/s signal, which is suitable for use in metropolitan applications. The relaxed optical frequency stabilization requirements allow the associated costs of CWDM to approach those of non-WDM optical components.

CWDM is also being used in cable television networks, where different wavelengths are used for the downstream and upstream signals. In these systems, the wavelengths used are often widely separated, for example the downstream signal might be at 1310 nm while the upstream signal is at 1550 nm.

An interesting and relatively recent development relating coarse WDM is the creation of GBIC and small form factor pluggable (SFP) transceivers utilizing standardized CWDM wavelengths. GBIC and SFP optics allow for something very close to a seamless upgrade in even legacy systems that support SFP interfaces. Thus, a legacy switch system can be easily "converted" to allow wavelength multiplexed transport over a fiber simply by judicious choice of transceiver wavelengths, combined with an inexpensive passive optical multiplexing device.

Passive CWDM is an implementation of CWDM that uses no electrical power. It separates the wavelengths using passive optical components such as bandpass filters and prisms. Many manufacturers are promoting passive CWDM to deploy fiber to the home.

Wiitek Technology--The manufacturer of Optical Transceivers(www.wiitek.com)

Prev: SONET/SDH Applications--SFP+,XFP,QSFP+ Optical Transceivers
Next: What is a Data Center?
Print | Close
CopyRight ©  Wiitek Technology-- SFP+ QSFP+ QSFP28 QSFP-DD OSFP DAC AOC, Optical Transceivers, Data Center Products Manufacturer
Add: 6F, 2nd Block, Mashaxuda Industrial Area, No.49, Jiaoyu North Road, Pingdi Town, Longgang District, Shenzhen, Guangdong, 518117
Admin